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1. The Heisenberg’s Uncertainty Principle

Theorem 1.1. (Heisenberg’s Uncertainty Principles) Suppose f is a function in S(R) such
that ‖f‖2 = 1. Then (∫

R
x2|f(x)|2dx

)(∫
R
ξ2|f̂(ξ)|2dξ

)
≥ 1

16π2
,(1)

and equality holds if and only if f(x) = Ae−Bx
2
where B > 0 and |A|2 =

√
2B/π.

2. The Hardy’s Uncertainty Principle

Theorem 2.1. (The Hardy’s Uncertainty Principle) Suppose f is a function in L1(R) such
that

|f(x)| . e−πax2
and |f̂(ξ)| . e−

π
a
ξ2

for some constant a > 0 and for all x, ξ ∈ R. Then f(x) = Ce−πax
2
for some constnat C.

Proof. First, notice that we may assume that a = 1. For, let us assume that the case a = 1
has been proved. Take a function f satisfying the hypothesis of theorem for some a > 0.
Define g(x) = f(

√
ax) and note that g and ĝ satisfies the hypothesis of the theorem with

a = 1. Therefore we get that g(x) = f(
√
ax) = Ce−πx

2
for all x ∈ R. This implies that

f(x) = Ce−πax
2
. Therefore, we assume that a = 1.

The Gausing decay of the function allows us to extend the Fourier tranform f̂ as an entire
function to the whole complex plane. Define

f̂(ξ + iη) =

∫
R
f(x)e−2πix(ξ+iη)dx

=

∫
R
f(x)e−2πixξe2πxηdx

Using the estimate on decay of f we get

|f̂(ξ + iη)| ≤
∫
R
e−πx

2
e2πxηdx

=

∫
R
e−π(x−η)2

eπη
2
dx

≤ eπη
2

for all ξ, η ∈ R.

Therefore, thefunction F (z) = eπz
2
f̂(z), z = ξ + iη ∈ C, is entire and on imaginary axis

(ξ = 0), we get

|F (iη)| ≤ |eπ(iη)2
f̂(z)| ≤ 1.

Also, by the hypothesis on f̂ we know that on the real axis (η = 0) also, the function F is
bounded by 1.

The Phragmen-Lindelöf principle for sectorial domains (as stated below) may be applied
(with some extra work) to this situation and we can deduce that the function F is bounded

Date: March 28, 2017.

1



2 SAURABH SHRIVASTAVA

on the entire Complex plane. Then by Liouville’s theorem we see that F is constant function.
This completes the proof of the theorem. �

2.1. Maximum modulus principle.

Theorem 2.2. (Maximum modulus principle) Let U be a connected open set of C and
f : U → C be a holomorphic function on U . If zz0 is a point in U such that

|f(z) ≤ |f(z0)|

for all z in a neighbourhood Nz0 ⊂ U , then f is a constant function on U .

In other words, the maximum modulus principle says that if f is a non-constant holo-
morphic function on U then |f | cannot attain its local maximum at a point in U . Further,
if U is a bounded domain then the maximum modulus principle asserts that |f | attains its
maximum on the the boundary of the domain U . However, this phenomenon is no longer

true for the unbounded domains. For example, the function f(z) := e−z
2

is holomorphic
in the upper half-plane. On the boundary, i.e., on real axis, the function is bounded by

1. However, for points z = iy on the imaginary axis we see that f(iy) := ey
2
, which is

unbounded.
There are many variants of the maximum modulus principle for particular domains

(bounded or unbounded) with an extra assumption on the growth of the function for un-
bounded domains. In particular, the theorems known as Hadamard’s three-lines (or three
circles) principle and Phragmen-Lindelöf principle are the most important.

Theorem 2.3. (Hadamard’s three-line principle) Let S := {x + iy : a < x < b} denotes a
strip in C for some real numbers a < b. Let f : S̄ → C be a bounded function such that it
is holomorphic on S and continuous on S̄. If

M(x) := sup
y
|f(x+ iy)|.

Then logM(x) is a convex function of [a, b].
In other words, x ∈ [a, b] is written as the convex hull x = ta+ (1− t)b, 0 ≤ t ≤ 1, then

M(x) ≤M(a)tM(b)1−t.

Theorem 2.4. (The Phragmen-Lindelöf principle for the half-plane) Let f be holomorphic
on the upper half-plane H and continuous on the boundary ∂H. Let

M(r) := max{|f(z)| : z ∈ H, |z| = r}.

If |f(x)| ≤ 1 for all x ∈ R and 1
r logM(r)→ 0 as r →∞, then |f(z)| ≤ 1 for all z ∈ H.

As a consequence of the above result, one can obtain the following Phragmen-Lindelöf
principle for the sectorial domains in the complex plane. This version of the Phragmen-
Lindelöf principle may be used to prove the Hardy’s uncertainty principle.

Theorem 2.5. (The Phragmen-Lindelöf principle for sectorial domains) Let α > 1
2 and let

Uα := {z = reiθ : |θ| < π
2α}. Suppose f is a holomorphic function on Uα and continuous of

the boundary ∂Uα. If |f(z)| ≤ 1 for all z ∈ ∂Uα and |f(z)| ≤ Ce|z|β for all z ∈ Uα for some
constants β < α and C > 0, then |f(z)| ≤ 1 for all z ∈ Uα.

3. The Benedick’s inequality

Theorem 3.1. (The Benedick’s inequality) Suppose f is a non-zero function in L1(R).
Denote Σ(f) = {x ∈ R : f(x) 6= 0}. Then

|Σ(f)||Σ(f̂)| =∞.
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Proof. Proof is by contradiction. Suppose for some non-zero function f ∈ L1(R)

|Σ(f)||Σ(f̂)| <∞.
Observe that, we may assume that |Σ(f)| < 1. For, a given function f with |Σ(f)| = K,

we can consider the function fK(x) := f( x
2K ).

Note that Σ(fK) = {x ∈ R : f(x/2K) 6= 0} and hence |Σ(f)|
2K = |Σ(fK)|. Then the known

result applied to fK gives us the desired result for the original function f .
Consider ∫

[0,1]

∑
n∈Z

χ
Σ(f̂)

(ξ + n)dξ =

∫
R
χ

Σ(f̂)
(ξ)dξ = |Σ(f̂)| <∞,

and similarly ∫
[0,1]

∑
n∈Z

χ
Σ(f)

(x+ n)dx =

∫
R
χ

Σ(f)
(x)dx = |Σ(f)| < 1.

From the above expressions we conclude that

•
∑
n∈Z

χ
Σ(f̂)

(ξ + n) < ∞ for almost every ξ ∈ [0, 1]. In other words, there is a set

E ⊂ [0, 1] with |E| = 1 such that∑
n∈Z

χ
Σ(f̂)

(ξ + n) <∞ for every ξ ∈ E.

Consequently, for every ξ ∈ E, f̂(ξ + n) 6= 0 for only finitely many n.
• There is a set F ⊂ [0, 1] of positive measure such that for all x ∈ F we have∑

n∈Z
χ

Σ(f)
(x+ n) < 1.

This gives us that f(x+ n) = 0 for all x ∈ F and all n ∈ Z.

Now for y ∈ E consider the function Fy :=
∑
n∈Z

f(x+n)e−2πiy(x+n). Observe that

Fy ∈ L1([0, 1]) as f(x)e−2πiyx is in L1(R).

Further, since for y ∈ E we have that f̂(y + n) 6= 0 for only finitely many n, we

see that the Fourier series of Fy at x is given by Fy(x) =
∑
n∈Z

f̂(y+ n)e−2πiyx. Since

this a finite sum, we can extend the function Fy as an entire function to the whole
complex plane C by

Fy(z) =
∑
n∈Z

f̂(y + n)e−2πiyz, z ∈ C.

Now we use the other definition of Fy and see that for x ∈ F we have that

|Fy(x)| ≤
∑
n∈Z
|f(x+ n)| = 0.

The set f has positive measure and Fy is entire if y ∈ E, then we can conclude

that Fy is identically zero function for y ∈ E. This further implies that f̂(y+n) = 0

for all y ∈ E and n ∈ Z. Since E ⊂ [0, 1] has full measure we see that f̂ is identically
zero function. This completes the proof.
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