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1. THE HEISENBERG’S UNCERTAINTY PRINCIPLE

Theorem 1.1. (Heisenberg’s Uncertainty Principles) Suppose f is a function in S(R) such
that || fll2 = 1. Then

) ([r@pa) ([ @iforie) > 1o

and equality holds if and only if f(z) = Ae=B%" where B > 0 and |A|]> = \/2B/x.

2. THE HARDY’S UNCERTAINTY PRINCIPLE

Theorem 2.1. (The Hardy’s Uncertainty Principle) Suppose f is a function in L'(R) such
that , R ,

[f(@)] S e™ and |f(€)] S e a*
for some constant a > 0 and for all z,§ € R. Then f(x) = Cemaw’ for some constnat C.
Proof. First, notice that we may assume that a = 1. For, let us assume that the case a = 1
has been proved. Take a function f satisfying the hypothesis of theorem for some a > 0.
Define g(z) = f(y/ax) and note that g and § satisfies the hypothesis of the theorem with
a = 1. Therefore we get that g(z) = f(v/az) = Ce ™" for all € R. This implies that
f(z) = Ce™™* Therefore, we assume that a = 1.

The Gausing decay of the function allows us to extend the Fourier tranform f as an entire
function to the whole complex plane. Define

flewin) = [ pajesrierna
_ / f(x)ef%rixﬁe%mndx
R

Using the estimate on decay of f we get

Fe+in) < /R e 2N gy

= / e~ @) 1’ gy
R

< ™ forall £,n € R.
Therefore, thefunction F(z) = €™ f(z), z = £ +in € C, is entire and on imaginary axis
(£ =0), we get
[Fin)| < 07" f(z)] < 1.
Also, by the hypothesis on f we know that on the real axis (n = 0) also, the function F' is
bounded by 1.

The Phragmen-Lindel6f principle for sectorial domains (as stated below) may be applied
(with some extra work) to this situation and we can deduce that the function F' is bounded
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on the entire Complex plane. Then by Liouville’s theorem we see that F' is constant function.
This completes the proof of the theorem. O

2.1. Maximum modulus principle.

Theorem 2.2. (Mazimum modulus principle) Let U be a connected open set of C and
f:U — C be a holomorphic function on U. If zzy is a point in U such that

1f(2) < |f(20)]

for all z in a neighbourhood N,, C U, then f is a constant function on U.

In other words, the maximum modulus principle says that if f is a non-constant holo-
morphic function on U then |f| cannot attain its local maximum at a point in U. Further,
if U is a bounded domain then the maximum modulus principle asserts that |f| attains its
maximum on the the boundary of the domain U. However, this phenomenon is no longer
true for the unbounded domains. For example, the function f(z) := e is holomorphic
in the upper half-plane. On the boundary, i.e., on real axis, the function is bounded by
1. However, for points z = iy on the imaginary axis we see that f(iy) := eyQ, which is
unbounded.

There are many variants of the maximum modulus principle for particular domains
(bounded or unbounded) with an extra assumption on the growth of the function for un-
bounded domains. In particular, the theorems known as Hadamard’s three-lines (or three
circles) principle and Phragmen-Lindeldf principle are the most important.

Theorem 2.3. (Hadamard’s three-line principle) Let S := {x +iy : a < x < b} denotes a
strip in C for some real numbers a < b. Let f : S — C be a bounded function such that it
is holomorphic on S and continuous on S. If

M (z) :=sup |f(x +iy)]|.
y
Then log M (x) is a convex function of |a,b].
In other words, x € [a,b] is written as the convex hull x =ta+ (1 —t)b, 0 <t <1, then
M(x) < M(a)'M(b)' .

Theorem 2.4. (The Phragmen-Lindelof principle for the half-plane) Let f be holomorphic
on the upper half-plane H and continuous on the boundary OH. Let

M(r) :=max{|f(2)|: z € H, |z| = r}.
If |[f(z)| €1 for allz € R and Llog M(r) — 0 as r — oo, then |f(2)| <1 for all z € H.

As a consequence of the above result, one can obtain the following Phragmen-Lindel6f
principle for the sectorial domains in the complex plane. This version of the Phragmen-
Lindeldf principle may be used to prove the Hardy’s uncertainty principle.

Theorem 2.5. (The Phragmen-Lindelf principle for sectorial domains) Let o > % and let
Uy :={z=re"?: 0] < 55 1+ Suppose f is a holomorphic function on U, and continuous of
the boundary OU,. If |f(2)| <1 for all z € OU,, and |f(z)| < Cel?V’ for all z € U, for some
constants f < o and C > 0, then |f(z)| <1 for all z € U,.

3. THE BENEDICK’S INEQUALITY

Theorem 3.1. (The Benedick’s inequality) Suppose f is a non-zero function in L'(R).
Denote X(f) ={x € R: f(x) #0}. Then

IS(HIZ()] = oe.
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Proof. Proof is by contradiction. Suppose for some non-zero function f € L*(R)

IS(HIIZ)] < oo

Observe that, we may assume that |X(f)| < 1. For, a given function f with |2(f)| = K,
we can consider the function fx(z) := f(5%)-

Note that X(fx) = {z € R: f(x/2K) # 0} and hence % = |2(fK)|- Then the known
result applied to fx gives us the desired result for the original function f.

Consider
Lo

o

From the above expressions we conclude that

S X €+ e =[x, (€106 = 19(7)] < o

nez
and similarly

ZXz(f)(x'i_n)d‘T = /RXZU) (x)dz = |2(f)] < 1.

nel

Y X (£ +n) < oo for almost every £ € [0,1]. In other words, there is a set
nez
E C [0,1] with |E| = 1 such that

szm(ﬁ—i—n) < oo for every £ € E.
nez

Consequently, for every ¢ € E, f (£ +n) # 0 for only finitely many n.
e There is a set F' C [0, 1] of positive measure such that for all x € F' we have

szm (z+n) <1
nez
This gives us that f(z +mn) =0 for all x € F' and all n € Z.

Now for y € E consider the function F, := 3 f(z +n)e ?™¥(@+") Observe that
nez

F, € L'([0,1]) as f(z)e” > is in L1(R).
Further, since for y € F we have that f (y +n) # 0 for only finitely many n, we

see that the Fourier series of F), at x is given by Fy(z) = ) f(y +n)e 2T Since
nez
this a finite sum, we can extend the function F, as an entire function to the whole

complex plane C by
Fy(z) = Z fly+n)e ™ 2 eC.
nez
Now we use the other definition of Fy and see that for € I’ we have that

|Fy(@)] <> |f(@+n)[ = 0.
nez
The set f has positive measure and F, is entire if y € E, then we can conclude
that F,, is identically zero function for y € E. This further implies that fly+n)=0
forally € E and n € Z. Since E C [0, 1] has full measure we see that f is identically
zero function. This completes the proof.
O
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